Section 8.1 Pythagorean Theorem and Special Right Triangles

Pythagorean Theorem

If a triangle is a right triangle, then the sum of the squares of the lengths of the legs is equal to the square of the length of the hypotenuse.

PROOF: SEE EXAMPLE 1.

If... $\triangle ABC$ is a right triangle.

Then...
$$a^2 + b^2 = c^2$$

Converse of the Pythagorean Theorem

If the sum of the squares of the lengths of two sides of a triangle is equal to the square of the length of the third side, then the triangle is a right triangle.

If... $a^2 + b^2 = c^2$

PROOF: SEE EXERCISE 17.

Then... $\triangle ABC$ is a right triangle.

Comparing a², b², and c²

$$a^2 + b^2 = c^2$$
 Right Triangle

$$a^2 + b^2 > c^2$$
 Acute Triangle

$$a^2 + b^2 < c^2$$
 Obtuse Triangle

Use the figure shown. Find AB.

ther your array + 15 =
$$c^2$$

 $144 + 225 = c^2$
 $369 = c^2$
 $C = \sqrt{369} \approx 19.2$

Use the figure shown. Find EF.

ter your answer.
$$\alpha^2 + 7^2 = 10^2$$
$$\alpha^2 + 49 = 100$$

Classify the triangle with the given sides as acute, obtuse, or right.

2, 3, 4

$$2^{2}+3^{2}+3^{2}+4$$

4, 5, 6

$$4^{2}+5^{2}$$
 $4^{2}+5^{2}$
 $4^{2}+5^{2}$
 $4^{2}+5^{2}$
 $4^{2}+5^{2}$
 $4^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2}$
 $5^{2}+5^{2$

2, 3, 4

$$3, 4, 5$$
 $3^{2}+3^{2}+3^{2}+4^{2}+5^{2}+5^{2}+4^{2}+5^{2}+5^{2}+2^{2}+1.2^{2}+2.0^$

A. To satisfy safety regulations, the distance from the wall to the base of a ladder should be at least one-fourth the length of the ladder. Did Drew set up the ladder correctly?

Is $\triangle MNO$ a right triangle? Explain.

Special Right Triangles

45°-45° - 90°

Is there a relationship between the lengths of \overline{AB} and \overline{AC} in $\triangle ABC$? Explain.

Less are construent

SOLUTION

Hypotenuse = Les. Ja

- **3.** Find the side lengths of the 45° - 45° - 90° triangle.
- a. What are XZ and YZ?

- **3.** Find the side lengths of the 45° - 45° - 90° triangle.
- **b.** What are *JK* and *LK*?

Enter your answer

45°-45°-90° Triangle Theorem

In a 45° - 45° - 90° triangle, the legs are congruent and the length of the hypotenuse is $\sqrt{2}$ times the length of a leg.

PROOF: SEE EXERCISE 18.

Then... $BC = s\sqrt{2}$

Special Right Triangles

$$a^{2}+b^{2}=(2a)^{2}$$
 $a^{2}+b^{2}=4a^{2}$
 $-a^{2}$
 $b^{2}=3a^{2}$
 $b=\sqrt{3}a^{2}$
 $=a\sqrt{3}$

a. What are PQ and PR?

Enter vour answer.

What are *UV* and *TV*?

nter your answer.

30°-60°-90° Triangle Theorem

In a 30°-60°-90° triangle, the length of the hypotenuse is twice the length of the short leg. The length of the long leg is $\sqrt{3}$ times the length of the short leg.

PROOF: SEE EXERCISE 19.

Then... $AC = s\sqrt{3}$, AB = 2s

b. What are AC and BC?

Enter
$$\forall A C = BC = \frac{14}{\sqrt{2}}$$

What are AB and BC?

iter your answer.

A. Alejandro needs to make both the horizontal and vertical supports, \overline{AC} and \overline{AB} , for a ramp. Is one 12-foot board long enough for both supports? Explain.

SOLUTION

5 + 8.44

B. Olivia starts an origami paper crane by making the 200-mm diagonal fold. What are the side length and area of the paper square?

$$A = \left(\frac{200}{\sqrt{2}}\right)^{2}$$

$$= \frac{40,000}{2}$$

$$= 20,000 \text{ nm}^{2}$$

If RS = 35, ST = 37, and RT = 71, is $\triangle RST$ a right triangle? Explain.

2594 < 5041

If RS = 40, ST = 41, and RT = 11, is $\triangle RST$ a right triangle? Explain.

If RS = 20, ST = 21, and RT = 29, is $\triangle RST$ a right triangle? Explain.

Find the value of x.

Enter your answer.

Find the value of x.

Enter your answer.

9. Charles wants to hang the pennant shown vertically between two windows that are 19 inches apart. Will the pennant fit? Explain.

Enter your answer.

